You’re right to reject the logic behind that because it’s nonsense. Its not making sense to them because they still presume some kind of good faith when it come to these sorts of things.
The reason we haven’t built more nuclear power stations is because oil, gas and coal companies will make less money, if we build more nuclear power stations.
They have the means, the motive and they have a well recorded history of being that cartoonishly villainous. Nothing else makes sense.
For huge countries as like the US: Maybe. You have enough space to also store the trash somewhere for thousands of years.
For small countries, like most of Europe, where the population density is way higher: hard pass.
iirc nuclear waste isn’t really that big of an issue anymore, they just drill a really deep hole that’s like a foot across and nobody will ever see it again
Not even a joke, that’s a very concise way to put the argument.
Except the retard didn’t just burn his house down, he burned thousands of people’s houses down in such a way that nobody could ever live there again, and came very close to burning down the whole continent in the same way.
(I’m still in favour of spicy rock steam)
Isn’t nuclear energy like super safe and have killed incredibly few people compared to all the other energy sources?
Or are you talking about destilling the magic rocks very much and putting them in a bomb?
Or to put it another way, we almost ruined a large swath of land and learned from that mistake, but chose not to use it so when we do have to switch to nukes because destroyed our planet we will have forgotten all those lessons and do it again.
One time? Wikipedia says over 100 serious incidents and lists about 30 of them. https://en.m.wikipedia.org/w/index.php?title=Nuclear_and_radiation_accidents_and_incidents&wprov=rarw1
It’s fine if you like nuclear, just don’t try and claim it was one time. It poses serious risk and should be treated as such.
Most of those didn’t involve the magic rocks, and most didn’t hurt anyone.
More people die creating the building materials for a powerplant (or a windmills, or a solar panel) than ever during operation. The numbers really don’t matter.
I honestly don’t care what we do, as long as we stop burning coal, oil and gas. The way I see it, every nuclear plant and windmill means we all die a little later.
Just put it somewhere noone lives like the Dakotas or places people who don’t matter live, like west Virginia. All the coal miners getting cancer anyway, why not double tap?
Burning down your house doesn’t poison people thousands of years later, so it’s not a perfect analogy.
Plus we have magic mirrors and magic fans that do the same thing as the magic rocks just way cheaper.
We’ve upgraded from burning our houses down to burning our atmosphere down which will absolutely poison humans for centuries to come. And since we now burn larger fires with black rocks, those release far more magic rock dust that poisons people than the magic rock water heaters do. Not to mention that fire has both killed more of us cave dwellers than magic rocks ever have (including the flying weaponry runes made from them) and have caused more ecological disasters, so fire is much worse.
Then we talk magic mirrors, they have evil rocks in them that get in our rivers and we don’t contain well. That aside, we show tradition to our ancestors by making much of them with slavery.
And the magic fans? The design is very human. They’d be a gift from the gods if only the spirit of the wind were always with us.
Summary: Magic rock still good, black rocks and black water make bad fire and hairless monkey make sick more.
I love the wording in here
Well, you see, the “Anti Magic Rock” Lobby has immense amount of power because of the money of the still lucrative “burning stuff and pollute everything” business.
It’s the “Burning other magic rocks” party.
That, and the green parties (at least in EU).
The “green” parties 💵💵
Step 1: Get magic rocks.
Step 2: Now design the rest of the nuclear reactor.
Step 3: ???
Step 4: Profit.
yes
I always wonder where we would actually be at as a civilization if it weren’t for fuckass lobbyists and money hoarding greedy assholes. This is a perfect example. If we’d learned from our mistakes and actually improved on nuclear energy there’s no telling where we’d be at this point.
But the profits!
“Right in the heart of it is an itty bitty windmill and that just don’t sit right with me” - That one cousin at Thanksgiving
Anon is so dense that he will surpass the Poincaré recurrence time of the Universe, and will exist forever. This also means that for every iteration of the current universe he passes through, another iteration of anon will be produced, such that there will eventually be enough idiot anons to form its own entire universe.
Anon is infinitely and eternally stupid.
Slow, expensive, riddeled with corruption, long ago surpassed by renewables. Why should we use it?
only antimatter could provide more energy density, it’s insanely powerful.
produces amounts of waste orders of magnitude lower than any other means of energy production
reliable when done well
it shouldn’t be replaced with renewables, but work with them
only antimatter could provide more energy density, it’s insanely powerful.
Nuclear energy indeed has very high energy per mass of fuel. But so what? Solar and wind power doesn’t even use fuel. So the energy density thing is a bit of a distraction.
But it’s not done well. Just look at the new built plants, which are way over budget and take way longer to build then expected. Like the two units in Georgia that went from estimated 14bn to finally 34bn $. In France who are really experienced with nuclear, they began building their latest plant in 2007 and it’s still not operational, also it went from 3.3bn to 13.2bn €. Or look at the way Hinkley Point C in the UK is getting developed. What a shit show: from estimated 18bn£ to now 47bn£ and a day where it starts producing energy not in sight.
Do you know WHY they went over budget?
Yes, but energy density doesn’t matter for most applications and the waste it produces is highly problematic.
85% of used fuel rods can be recycled to new fuel rods. And there’s military uses for depleted uranium too. So, essentially every bit of the waste can be recycled. Can’t say the same for fossil fuels.
“85% of used fuel rods can be recycled” is like “We can totally capture nearly all the carbon from burning fossil fuels and then remove the rest from the atmosphere by other means”.
In theory it’s correct. In reality it’s bullshit that will never happen because it’s completely uneconomical and it’s just used as an excuse to not use the affordable technology we already have available and keep burning fossil fuels.
Capturing all the extra carbon from the atmosphere is not as expensive as it sounds like. It can easily be done by a few rich countries in very few decades once we stop adding more there every day.
Recycling nuclear waste is one of those problems that should be easy but nobody knows what the easy way looks like. It’s impossible to tell if some breakthrough will make it viable tomorrow or if people will have to work for 200 years to get to it. But yeah, currently it’s best described as “impossible”.
Capturing all the extra carbon from the atmosphere is not as expensive as it sounds like. It can easily be done by a few rich countries in very few decades once we stop adding more there every day.
What?
For starters, carbon capture takes an insane amount of power. And to follow up: we couldn’t even build the facilities is “a few decades” even if we free power and infinite money.
Yeah, you’re not making any sense. How is the recyclability of nuclear fuel rods an excuse to keep burning fossil fuels? That’s a massive leap in logic that demands an explanation.
They’re saying that plausible uses don’t necessarily translate to real world use, in practice. I have no stake in this, just translating
While I understand where they’re coming from, it should be noted that they’re likely basing their experience with recyclability on plastic recycling which is totally a shit show. The big difference comes in when you realize that plastic is cheap as shit whereas uranium fuel rods are not.
the waste it produces is highly problematic.
It’s a solved problem. https://www.youtube.com/watch?v=4aUODXeAM-k https://www.youtube.com/watch?v=lhHHbgIy9jU
If something is Nuclear enough it can generate heat, its just the reactors make use of an actual reaction that nuclear waste can’t do anymore. Yever watch the Martian, he has a generator that’s fuel is lead covered beads of radioactive material, it doesn’t generate as much as reactors but it’s still a usable amount.
If something is Nuclear enough it can generate heat
That’s an extreme oversimplification. RTGs don’t use nuclear waste. Spent reactor fuel still emits a large amount of gamma and neutron radiation, but not with enough intensity to be useful in a reactor. The amount of shielding required makes any kind of non-terrestrial application impossible.
The most common RTG fuel is plutonium (238Pu, usually as PuO2), which emits mostly alpha and beta particles, and can be used with minimal shielding. It can’t be produced by reprocessing spent reactor fuel. In 2024, only Russia is manufacturing it. Polonium (210Po) is also an excellent fuel with a very high energy density, but it has a prohibitively short half-life of just over a hundred days. It also has to be manufactured and can’t be extracted.
90Sr (strontium) can be extracted from nuclear fuel, and was used by early Soviet RTGs, but only terrestrially because the gamma emission requires heavy shielding. Strontium is also a very reactive alkaline metal. It isn’t used as RTG fuel today.
Right now we probably use more energy to produce antimatter than getting it back
Energy density is a useless bullshit metric for stationary power.
Produces more waste than almost all of the renewables.
Reliable compared to… … … ok, I’m out of ideas, they need shutdowns all the time. Seems to me it’s less reliable than anything that isn’t considered “experimental”.
And it can’t work with renewables unless you add lots and lots of batteries. Any amount of renewables you build just makes nuclear more expensive.
They are an interesting technology, and I’m sure they have more uses than making nuclear weapons. It’s just that everybody focus on that one use, and whatever other uses they have, mainstream grid-electricity generation is not it.
You go on thinking renewables are ever going to replace fossil fuel while we charge full tilt to our doom
Not sure I get what you mean by “slow”.
And it’s not entirely shocking that we have more of the power source we’ve been building and less of the one we stopped building.
Sometimes the sun doesn’t shine, sometimes the wind doesn’t blow. Renewables are great and cheap, but they aren’t a complete solution without grid level storage that doesn’t really exist yet.
Let’s be clear, the only reason grid-level storage for renewables “doesn’t exist” is because of a lack of education about (and especially commitment to) simple, reliable, non-battery energy storage such as gravitational potential, like the ARES project. We’ve been using gravitational potential storage to power our mechanisms since Huygens invented the freaking pendulum clock. There is simply no excuse other than corruption for the fact that we don’t just run a couple trains up a hill when we need to store massive amounts of solar energy.
There is simply no excuse other than corruption for the fact that we don’t just run a couple trains up a hill when we need to store massive amounts of solar energy.
How about basic maths? I
Scale is a huge fucking issue. The little country of the Netherlands, where I happen to live, uses 2600 petajoule per day. So let’s store 1 day of power, at 100% efficiency, using the tallest Alp (the Mont Blanc).
Let’s round up to 5000 meters of elevation. We need to store 2.6e18 joules, and 1 joule is 100 grams going up 1 meter. So to power a tiny little country, we need to lift roughly 5e13 kilos up the Mont Blanc. To visualize, that’s 1.7 billion 40ft shipping containers, or roughly 100 per inhabitant.
Using 555m blocks of granite, you’d need 166 million of them (9 for every person in the country). Assuming a 2% slope, you’d need to build a 250.000m long railway line. And if you lined all those blocks up, with no space in between, you’d need 3328 of those lines (which then couldn’t move, because they fill the entire space between the summit and sea level).
And that’s just 1 small country.
Solar with Battery grid storage is now cheaper than nuclear.
If the demand goes up I have some doubt, also, mining for Lithium is far from being clean, and then batteries are becoming wastes, so I doubt you would replace nuclear power with this solution
I guess in some regions it could work, but you’re still depending on the weather
You don’t need lithium. That’s just the story told to have an argument why renewables are allegedly bad for the environment.
Lithium is fine for handhelds or cars (everywhere where you need the maximum energy density). Grid level storage however doesn’t care if the building houising the batteries weighs 15% more. On the contrary there are a lot of other battery materials better suited because lithium batteries also come with a lot of drawback (heat and quicker degradation being the main ones here).
PS: And the materials can also be recycled. Funnily there’s always the pro-nuclear argument coming up then you can recycle waste to create new fuel rod (although it’s never actually done), yet with battery tech the exact same argument is then ignored.
Density doesn’t matter much when it comes to grid scale, indeed.
What battery technologies are you thinking of? Zinc-ion? Flow batteries?
They’re currently bringing sodium batteries to market (as in “the first vendor is selling them right now”). They’re bulky but fairly robust IIRC and they don’t need lithium.
you know that grid storage does not always mean “a huge battery”, you can also just pump water in a higher basin oder push carts up a hill and release the potential energy when you need it…
Pumped storage is a thing yeah. But might just as well go full hydro, if you’re doing the engineering anyways.
I feel like we’re missing the part about “push carts up a hill”, which involves virtually no serious engineering difficulties aside from “which hill” and “let’s make sure the tracks run smoothly”. See: the ARES project in Nevada
Yeah, that’s 50MW, storing power for 15 minutes, so 20MWh. (1).
There’s also a similar company: gravicity.
They’re a fun academic endeavour. But if gravity provides the potential, water beats them per dollar spend. It’s not even close.
So do regular batteries.
Yeah, lithium mining and processing is extremely toxic and destructive to the environment. On one hand, it’s primarily limited to a smaller area, but on the other hand, is it sustainable long-term unless a highly efficient lithium recycling technology emerges? And yes, I know there are some startups that are trying to solve the recycling problem, some that are promising.
Would love to see a source for that claim. How many 9’s uptime do they target? 90%, 99%
This is old news now! Here’s a link from 5 years ago. https://www.forbes.com/sites/jeffmcmahon/2019/07/01/new-solar--battery-price-crushes-fossil-fuels-buries-nuclear/
This is from last year: https://www.lazard.com/research-insights/2023-levelized-cost-of-energyplus/
As to uptime, they have the same legal requirements as all utilities.
I was pro nuke until finding out solar plus grid battery was cheaper.
Source (1)
Later this month the LA Board of Water and Power Commissioners is expected to approve a 25-year contract that will serve 7 percent of the city’s electricity demand at 1.997¢/kwh for solar energy and 1.3¢ for power from batteries.
The project is 1 GW of solar, 500MW of storage. They don’t specify storage capacity (MWh). The source provides two contradicting statements towards their ability to provide stable supply: (a)
“The solar is inherently variable, and the battery is able to take a portion of that solar from that facility, the portion that’s variable, which is usually the top tend of it, take all of that, strip that off and then store it into the battery, so the facility can provide a constant output to the grid”
And (b)
The Eland Project will not rid Los Angeles of natural gas, however. The city will still depend on gas and hydro to supply its overnight power.
Source (2) researches “Levelized cost of energy”, a term they define as
Comparative LCOE analysis for various generation technologies on a $/MWh basis, including sensitivities for U.S. federal tax subsidies, fuel prices, carbon pricing and cost of capital
It looks at the cost of power generation. Nowhere does it state the cost of reaching 90% uptime with renewables + battery. Or 99% uptime with renewables + battery. The document doesn’t mention uptime, at all. Only generation, independant of demand.
To the best of my understanding, these sources don’t support the claim that renewables + battery storage are costeffective technologies for a balanced electric grid.
It looks at the cost of power generation
Yes.
But then you added the requirement of 90% uptime which is isn’t how a grid works. For example a coal generator only has 85% uptime yet your power isn’t out 4 hours a day every day.
Nuclear reactors are out of service every 18-24 months for refueling. Yet you don’t lose power for days because the plant has typically two reactors and the grid is designed for those outages.
So the only issue is cost per megawatt. You need 2 reactors for nuclear to be reliable. That’s part of the cost. You need extra bess to be reliable. That’s part of the cost.
Uptime is calculated by kWh, I.E How many kilowatts of power you can produce for how many hours.
So it’s flexible. If you have 4kw of battery, you can produce 1kw for 4hrs, or 2kw for 2hrs, 4kw for 1hr, etc.
Nuclear is steady state. If the reactor can generate 1gw, it can only generate 1gw, but for 24hrs.
So to match a 1gw nuclear plant, you need around 12gw of of storage, and
13gw2gw of production.This has come up before. See this comment where I break down the most recent utility scale nuclear and solar deployments in the US. The comentor above is right, and that doesn’t take into account huge strides in solar and battery tech we are currently making.
The 2 most recent reactors built in the US, the Vogtle reactors 3 and 4 in Georgia, took 14 years at 34 billion dollars. They produce 2.4GW of power together.
For comparison, a 1 GW solar/battery plant opened in nevada this year. It took 2 years from funding to finished construction, and cost 2 billion dollars.
So each 1.2GW reactor works out to be 17bil. Time to build still looks like 14 years, as both were started on the same time frame, and only one is fully online now, but we will give it a pass. You could argue it took 18 years, as that’s when the first proposals for the plants were formally submitted, but I only took into account financing/build time, so let’s sick with 14.
For 17bil in nuclear, you get 1.2GW production and 1.2GW “storage” for 24hrs.
So for 17bil in solar/battery, you get 4.8GW production, and 2.85gw storage for 4hrs. Having that huge storage in batteries is more flexible than nuclear, so you can provide that 2.85gw for 4 hr, or 1.425 for 8hrs, or 712MW for 16hrs. If we are kind to solar and say the sun is down for 12hrs out of every 24, that means the storage lines up with nuclear.
The solar also goes up much, much faster. I don’t think a 7.5x larger solar array will take 7.5x longer to build, as it’s mostly parallel action. I would expect maybe 6 years instead of 2.
So, worst case, instead of nuclear, for the same cost you can build solar+ battery farms that produces 4x the power, have the same steady baseline power as nuclear, that will take 1/2 as long to build.
Uptime is calculated by kWh, I.E How many kilowatts of power you can produce for how many hours.
That’s stored energy. For example: a 5 MWh battery can provide 5 hours of power at 1MW. It can provide 2 hours of power, at 2.5MW. It can provide 1 hour of power, at 5MW.
The max amount of power a battery can deliver (MW), and the max amount of storage (MWh) are independant characteristics. The first is usually limited by cooling and transfo physics. The latter usually by the amount of lithium/zinc/redox of choice.
What uptime refers to is: how many hours a year, does supply match or outperform demand, compared to the number of hours a year.
So to match a 1gw nuclear plant, you need around 12gw of of storage, and 13gw of production.
This is incorrect. Under the assumption that nuclear plants are steady state, (which they aren’t).
To match a 1GW nuclear plant, for one day, you need a fully charged 1GW battery, with a capacity of 24GWh.
Are you sure you understand the difference between W and Wh?
My math assumes the sun shines for 12 hours/day, so you don’t need 24 hours storage since you produce power for 12 of it.
My math is drastically off though. I ignored the 12 hrs time line when talking about generation.
Assuming that 12 hours of sun, you just need 2Gw solar production and 12Gw of battery to supply 1Gw during the day of solar, and 1Gw during the night of solar, to match a 1Gw nuclear plants output and “storage.”
Seeing as those recent projects put that nuclear output at 17 bil dollars and a 14 year build timeline, and they put the solar equivalent at roughly 14 billion(2 billion for solar and 12 billion for storage) with a 2 - 6 year build timeline, nuclear cannot complete with current solar/battery tech, much less advancing solar/battery tech.
https://www.theguardian.com/environment/2024/oct/24/power-grid-battery-capacity-growth
US power grid added battery equivalent of 20 nuclear reactors in past four years
Thats a chicken/egg peoblem. If enough renewables are build the storage follows. In a perfect world goverments would incentivice storage but in an imperfect one problems have to occure before somebody does something to solve them. Anyway, according to lazard renewables + storage are still cheaper than NPPs.
Imagine this (not so) hypothetical scenario:
Yellowstone or another supervolcano erupts and leads to a few years of volcanic winter, where there is much less sunshine. This has historical precedent, it has happened before, and while in and of itself it will impact a lot of people regardless of anything else, wouldn’t you agree it would be better to have at least some nuclear power capacity instead of relying solely on renewables?
Sure, such a scenario is not probable, but it pays to stay safe in the case of one such event. I would say having most of our power from renewables would be best, having it supported by 10-20% or so nuclear with the possibility of increase in times of need would make our electric grids super resilient to stuff
Yeah let me imagine a supervolcano explosion of that scale to effect global weather patterns. What do you think will happen to your reactors? No, they are not indestructable just because they can handle an earthquake of normally expected proportion.
Nature catastrophes are the top 1 danger to nuclear energy. See Fukushima.
And the real question here would be a comparison between risk of a nuclear accident event and a renewables-impacting climate event.
Hey now, someone who knows almost nothing is just asking questions here.
This argument again?
Yes, it’s called reality. I know it’s an ugly thing that just doesn’t go away no matter how hard you want it to.
Dude, thorium reactors will be ready any day now, along with mini reactors! Everything will be super cheap and all the waste will be reused and we won’t be dependent on any fuel sources from Russia and all our problems will be gone!
/s, in case it’s not obvious