Summary
A new study from Spain’s Autonomous University of Barcelona reveals that tea bags made from nylon, polypropylene, and cellulose release billions of micro- and nanoplastic particles when steeped in boiling water.
These particles, which can enter human intestinal cells, may pose health risks, potentially affecting the digestive, respiratory, endocrine, and immune systems.
Researchers urge regulatory action to mitigate plastic contamination in food packaging.
Consumers are advised to use loose-leaf tea with stainless steel infusers or biodegradable tea bags to minimize exposure.
Right. You still drink 300-350 ml per cup. It doesn’t matter if you did 1 teabag per 300 ml or 300 teabags per 300 ml. In the first instance, you would have to measure 300 ml to get the X particles per cup. In the second instance, you can get the X particles per ml which is effectively per cup, or more accordingly, per teabag. It’s the same. Please correct me if I’m wrong, but I think your math of 23k particles per teabag is not mathing.
Also, usually you don’t measure 1 teabag because of individual variability, so what they are doing is getting the average amount of particles from those 300 teabags. Much more accurate.
They likely are using a magnetic stir bar. 750 RPM will not virtually blend it. This video shows it going at 3000 RPM max for reference. (https://youtu.be/fzzV75aMM1c) In a large container, the water at the bottom will be swirling faster than the water at the top. And also, 95 C will not be at an active boil - that’s at 100 C. It suggests to me that they boiled water, then poured it into the teabag beaker.
I think that maybe you haven’t worked in a lab before, so it seems like the methodology isn’t right, but as a scientist, this passes the sniff test for me. Honestly, this part isn’t even the novel part of their study - the interesting part is that they found that intestinal cells took up the particles, but I digress.
I think you might have skimmed over the methods, but think what the OP was trying to say is:
Concentration: 300 tea bags / 600mL = 1 teabag per 2mL (175 tea bags in one 350mL cup of tea, doesnt appear typical?)
Mixing: 750rpm × [1m/60s] = 12.5 rotations a sec (Awfully fast to be stirring tea, constantly)
Incubation time: Not specified. (They could have left boiling overnight?)
There seems to be many points about the methodology that raise eyebrows. Maybe it’s ok if you want to use this method to purify particles for structural analysis or test toxicity on cells, but it doesn’t seem fair to present this as “release of micro/nanoplastics (MNPLs) from polymer-based teabags into the aqueous phase during typical usage”, as the amounts seem exaggerated.
Thanks for the clarification of the concerns.
For concentration, it’s not typical for 2 reasons. 1) their instrument may have a detection limit, so if they brewed 1 teabag per 300 ml, they’d have to concentrate it in another way. 2) they’re pooling a batch of teabags, which gives an average, reducing variability teabag to teabag.
Besides mimicking the exact real world scenarios, I think I don’t get what the issue is with concentration. If you boil something that’s dissolvable in a larger volume of water, you’ll typically get out more “pieces” than if you were to do it in a smaller volume. In the experiment, if anything, they may be underestimating the particle release.
For mixing, this method is super standard in the lab. I think that when the methods say 750 RPM, they’re talking about the speed of the stir bar - most definitely with the mass of the 300 wet teabags in that volume, the whole mixture isn’t actually going to get to 750 RPM. If it did, everything would spill out the side, over the top lol
Fair point about incubation time. Do we have a standard for how long people keep their teabags in hot water? I usually don’t take it out of the container when drinking it to go, and if it sits over a few hours and there’s stuff left over, I will usually finish the drink.
In any case, what’s the lowest amount of plastic microparticles we’re okay with? Above, the other commenter said 20k after every generous interpretation moving the number lower. Isn’t that still an insane amount for one drink?
I think my issue with the commenter’s first comment is that they call for the paper’s retraction over what is completely standard in lab science.
Yeah, if you increase concentration until it’s visible you will get high concentration solution. By the same principle water is a deadly poison because scientists forse fed a bunch of rats liters of water until they died.
'bout four minutes should be enough. Otherwise it just turns bitter. A few hours? 🤢