You’re glossing over the fact that the battery is a backup to kick in only when renewable production doesn’t meet demand, and that much more space-efficient energy storage solutions exist, even if they lose more power to inefficiency.
That happens literally every night though and wind also doesn’t blow 100% of the time. There are significant amounts of time where the sun isn’t shining and the wind isn’t blowing. The current solution to this issue that is used all around the world are fossil fuels. Renewables make up a trivial* amount of power production compared to fossil fuels, and as we phase out fossil fuels, the requirement for energy storage is going up drastically.
That happens literally every night though and wind also doesn’t blow 100% of the time.
Very true, but the fact that wind blows often and there’s also varying amounts of direct sunlight during the day already massively decreases the amount of storage required for a grid. You don’t need the capacity to cover 100% of energy usage, sustained, like you suggested earlier. Especially as grids become (geographically) larger and smarter — we need wind and sun somewhere to cover energy needed elsewhere — it doesn’t have to be localized. Plus solar output obviously peaks during the day, when demand is also highest.
Renewables make up a trivial* amount
The percentage is absolutely not trivial today. Especially considering there are multiple large grids today that can easily sustain 50%+ renewable energy over sustained periods. And 30% by 2030 is a lot, though of course it could be a lot better.
and as we phase out fossil fuels, the requirement for energy storage is going up drastically.
You’re glossing over the fact that the battery is a backup to kick in only when renewable production doesn’t meet demand, and that much more space-efficient energy storage solutions exist, even if they lose more power to inefficiency.
That happens literally every night though and wind also doesn’t blow 100% of the time. There are significant amounts of time where the sun isn’t shining and the wind isn’t blowing. The current solution to this issue that is used all around the world are fossil fuels. Renewables make up a trivial* amount of power production compared to fossil fuels, and as we phase out fossil fuels, the requirement for energy storage is going up drastically.
*<30% by 2030 is the prediction by the EIA
30% is NOT trivial lmao
Do you know what else decreases when the sun goes down? Power demand.
Very true, but the fact that wind blows often and there’s also varying amounts of direct sunlight during the day already massively decreases the amount of storage required for a grid. You don’t need the capacity to cover 100% of energy usage, sustained, like you suggested earlier. Especially as grids become (geographically) larger and smarter — we need wind and sun somewhere to cover energy needed elsewhere — it doesn’t have to be localized. Plus solar output obviously peaks during the day, when demand is also highest.
The percentage is absolutely not trivial today. Especially considering there are multiple large grids today that can easily sustain 50%+ renewable energy over sustained periods. And 30% by 2030 is a lot, though of course it could be a lot better.
Yes, no-one is arguing otherwise.